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1st part: Introduction to MPS
Drawbacks of statevector simulation, tensor network notation, building an MPS exactly, cutting the bond 
dimension and connection to entanglement (area law).

2nd part: Simulation of quantum circuits using MPS

How to build quantum circuits with QUIMB and obtain wavefunction amplitudes, local expectation values 
and sampling. As an example, we will build Bell/GHZ states.

Outline

3rd part: Hands-on: building more entangled states

Let’s build a random quantum circuit and study the scaling of entanglement and bond dimension.
What happens if instead we use a circuit with physical meaning?



Motivation
Why Tensor Networks (TN)?

TN are a very efficient approximation to quantum states with low entanglement.

The type of states that can be approximated with TN are actually very important in 
quantum physics.



For example, TN they have become central to 
simulate large many-body quantum systems.

Many useful algorithms have been developed:

DMRG, TEBD, etc.
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But TN are not only used to simulate many-body quantum systems!

They have many other applications. For example, they are used in 
machine learning or they can be used to simulate quantum circuits.
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Drawbacks of statevector simulation of QC

Statevector 
simulation scales 
exponentially but it 
is EXACT!



Drawbacks of statevector simulation of QC

We want to find a good 
compression of the 
wavefunction 

Statevector 
simulation scales 
exponentially but it 
is EXACT!



First, let’s introduce tensor notation



First, let’s introduce tensor notation

Contraction of a bond:

Physical indices:



Building an MPS exactly

Let’s consider we have the wavefunction 
of a system of 5 spins:



Building an MPS exactly

1. The first step is to re-group the 
indices. We separate the first spin:

we re-shape the tensor with 
size 25 into a matrix of size 
2 x 24.



Building an MPS exactly
2. Next, we implement the Singular Value Decomposition (SVD):

Given a n x m matrix M, 

where

m x min(m,n)

min(m,n) x min(m,n)     positive diagonal matrix

min(m,n) x n
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2 x χ1   χ1 x χ1     χ1 x 24

The dimension χ1 is called the 
bond dimension.

χ1 ≤ 2

we will talk 
about it later
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Building an MPS exactly
3. Iterate over the chain:

Note that now:

χ2 ≤ χ12 ≤ 22

we re-shape the tensor to

2χ1 x 23 (= 22x23)

=



Building an MPS exactly
3. Iterate over the chain:

=

=

χ2 ≤ χ12 ≤ 22

χ3 ≤ min(2χ2,2
2) = 22



Building an MPS exactly
3. Absorb the diagonal matrices from SVD:



Building an MPS exactly

We just found a different expression for the wavefunction. 
We did this exactly: the number of parameters is the same! 

# params ~ dN = 25  # params ≲ dN(χmax)
2  = 2·5·(2 )

4



Building an MPS exactly

BUT.. THERE IS AN EFFICIENT WAY TO COMPRESS AN MPS!

# params ~ dN = 25  # params ≲ dN(χmax)
2  = 2·5·(2 )

4



Cutting the bond dimension

Let’s go back to the bond dimensions 

For a system of 5 spins 
is not bad:



Cutting the bond dimension

Let’s go back to the bond dimensions 

But it gets worse 
exponentially. 
For 10 spins:



Cutting the bond dimension

Let’s go back to the bond dimensions 

For 20 spins:



Cutting the bond dimension

The solution is to manually fix a 
χmax so that it does not increase 
exponentially.



Cutting the bond dimension

The solution is to manually fix a 
χmax so that it does not increase 
exponentially.

By cutting the bond dimension we get rid of 
the smallest singular values of a bond:



The physical meaning of the bond dimension

the reduced density matrix of one of the sides is defined as

The decay of the singular values is 
directly related to the entanglement 
entropy of the system! 
If we cut the system in two…



The physical meaning of the bond dimension

the reduced density matrix of one of the sides is defined as

The decay of the singular values is 
directly related to the entanglement 
entropy of the system! 
If we cut the system in two…

Then, the bipartite entanglement entropy:



Entanglement growth: the area law

How does the 
entanglement entropy 
scale for quantum states 
that we are interested in?

The entanglement entropy for an 
MPS scales as ~N0 (it’s constant!) 

AREA LAW:



Entanglement growth: the area law

How does the 
entanglement entropy 
scale for quantum states 
that we are interested in?

The entanglement entropy for an 
MPS scales as ~N0 (it’s constant!) 

AREA LAW: long-range 
entanglement 

effect on the 
central bond



Entanglement growth: the area law

How does the 
entanglement entropy 
scale for quantum states 
that we are interested in?

For a quantum circuit we usually:

➢ Start with a product state (no 
entanglement)

➢ Apply LOCAL gates

If the circuit is shallow, MPS will still 
give us a good representation.

The entanglement entropy for an 
MPS scales as ~N0 (it’s constant!) 



Summary: Statevector vS MPS 
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We will use QUIMB, a python 
library focused on tensor networks 
which allows us to simulate 
quantum circuits using statevector 
and MPS. 

We will compare the scaling of the 
two methods when building a:

➔ Bell state
➔ GHZ state



We will use QUIMB, a python 
library focused on tensor networks 
which allows us to simulate 
quantum circuits using statevector 
and MPS. 

We will compare the scaling of the 
two methods when building a:

➔ Bell state
➔ GHZ state

NOTEBOOK

But first, let’s look a bit into 
the library!



How to build a quantum circuit using QUIMB

measure expectation 
values or sampling 
(we can also extract wave 
function amplitudes)

initial state (usually product 
state, easy to define)

set of parametrized local 
gates (rotations and 
entangling gates).



Starting with an example: building a Bell state



Starting with an example: building a Bell state

Let’s build it using statevector 
simulator first and then using 
MPS

NOTEBOOK



Starting with an example: building a Bell state

Let’s build it using statevector 
simulator first and then using 
MPS

We could build the MPS 
exactly. Entangling gates 

increase the bond dimension, 
but in this case only up to 2!



A bit more costly: building a GHZ state

Now we increase the number of qubits!

Note that we’d have to work in a space 
of 2Nx2N matrices. 

If we try to do this for 20 qubits with 
statevector, the computer cannot handle 
it.

H

…

N qubits
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N qubits

There is still a trick we can use 
with statevector:
sparse
matrices!



A bit more costly: building a GHZ state

Now we increase the number of qubits!

Note that we’d have to work in a space 
of 2Nx2N matrices. 

If we try to do this for 20 qubits with 
statevector, the computer cannot handle 
it.

H

…

N qubits

● The GHZ state has low 
entanglement and therefore 
the bond dimension stays 

low.
● Sparse statevector and 

exact MPS use the same 
number of parameters.
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Random circuits

Why do we need MPS when we 
can use sparse matrices? To 
answer this question, we need to 
generate a state with more 
entanglement.

Then, both dense and sparse 
work badly.



Going back to… measurements

measure expectation 
values or sampling 
(we can also extract 
wave function 
amplitudes)

initial state (usually 
product state, easy to 
define)

set of parametrized local 
gates (rotations and 
entangling gates).

But first, let’s briefly discuss how to perform measurements.



Going back to… measurements
Computing a local expectation value 



Going back to… measurements
Sampling



Random circuits

1 2 3 4

NOTEBOOK

We are ready to study how 
does the MPS simulation 
perform in terms of num of 
layers.

We will look at max bond 
dimension, entanglement, 
fidelities, order parameters, 
etc.

=

(random 
unitary)



Quench in the Ising model

NOTEBOOK

U(dt) U(dt) U(dt)U(dt)

1 2 3 4

Now we look at a physically 
relevant example.



3rd part: Hands-on: building more entangled states
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1st part: Introduction to MPS
Drawbacks of statevector simulation, tensor network notation, building an MPS exactly, cutting the bond 
dimension and connection to entanglement (area law).

Outline

2nd part: Simulation of quantum circuits using MPS

How to build quantum circuits with QUIMB and obtain wavefunction amplitudes, local expectation values 
and sampling. As an example, we will build Bell/GHZ states.Spoiler: There are other types of tensor networks!
Tree-tensor networks, PEPS (2D)... and they present some advantages.
But working with them is not as easy: contraction of the tensors becomes a problem!



Tensor networks with other structures

MPS

Other structures allow us to 
capture more entanglement!

But the problem is the 
contraction of the TN.

PEPS TTN MERA



Another reason for MPS: canonical form

Another reason why MPS is much 
simpler than the other options is 
the canonical form.

This is used in DMRG, for 
example.
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There are other structures that can capture more 
entanglement but contraction becomes a problem.

Summary & conclusions
How to exactly build an MPS starting with a quantum state.
How to compress the state by cutting the bond dimension.
Connection to entanglement.

Build states with more entanglement and study the performance 
of MPS regarding memory, computation time and fidelity.

How to apply gates to an MPS using QUIMB.
Build two simple low-entangled states to compare 
MPS to statevector simulation.
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