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Quantum teleportation1 is an important ingredient in distributed
quantumnetworks2, and can also serve as an elementary operation
in quantum computers3. Teleportation was first demonstrated as a
transfer of a quantum state of light onto another light beam4–6;
later developments used optical relays7 and demonstrated entangle-
ment swapping for continuous variables8. The teleportation of a
quantum state between two single material particles (trapped
ions) has now also been achieved9,10. Here we demonstrate tele-
portation between objects of a different nature—light and matter,
which respectively represent ‘flying’ and ‘stationary’ media. A
quantum state encoded in a light pulse is teleported onto a
macroscopic object (an atomic ensemble containing 1012 caesium
atoms). Deterministic teleportation is achieved for sets of coherent
states with mean photon number (n) up to a few hundred. The
fidelities are 0.58 6 0.02 for n 5 20 and 0.60 6 0.02 for n 5 5—
higher than any classical state transfer can possibly achieve11.
Besides being of fundamental interest, teleportation using a
macroscopic atomic ensemble is relevant for the practical
implementation of a quantum repeater2. An important factor for
the implementation of quantum networks is the teleportation
distance between transmitter and receiver; this is 0.5metres in the
present experiment. As our experiment uses propagating light to
achieve the entanglement of light and atoms required for tele-
portation, the present approach should be scalable to longer
distances.

Quantum teleportation—a disembodied transfer of a quantum
state with the help of distributed entanglement—was proposed in a
seminal paper1. The generic protocol of quantum teleportation
begins with the creation of a pair of entangled objects which are
shared by two parties, Alice and Bob. This step establishes a quantum
link between them. Alice receives an object to be teleported and
performs a joint measurement on this object and her entangled
object (a Bell measurement). The result of this measurement is
communicated via a classical communication channel to Bob, who
uses it to perform local operations on his entangled object, thus
completing the process of teleportation.

In our experiment, a pair of entangled objects is created by sending
a strong ‘in’ pulse of light (shown on the left in Fig. 1) through an
atomic sample at Bob’s location. As a result of the interaction
between the light and the atoms, the transmitted ‘out’ light received
by Alice’s and Bob’s atoms become entangled. On Alice’s site the
entangled pulse is mixed with the pulse to be teleported on a 50/50
beamsplitter (BS in Fig. 1). A Bell measurement in the form of
homodyne measurements of the optical fields in the two output ports
of the BS is carried out and the results are transferred to Bob as
classical photocurrents. Bob performs spin rotations on the atoms to
complete the teleportation protocol. Finally, the state of the atoms is
analysed to confirm that the teleportation has been successful.

The experiment follows a recent proposal for light-to-atoms
teleportation12 using multimode entanglement of light with an

atomic ensemble placed in a magnetic field. We describe teleporta-
tion in the language of dimensionless canonical variables13; this
provides a common description for light and atoms, and allows for
a complete tomographic characterization of the states.

The atomic object is a spin-polarized gas sample of approximately
Nat ¼ 1012 caesium atoms in a 25 £ 25 £ 25 mm paraffin-coated
glass cell at around room temperature14–18 placed in a homogeneous
magnetic field (B). Atoms are initially prepared in a coherent spin
state by a 4-ms circularly polarized optical pumping pulse propa-
gating along the direction of the magnetic field, into the sublevel
F ¼ 4;mF ¼ 4 (Fig. 1) of the ground state with the collective ensemble
angular momentum kĴxl¼ Jx ¼ 4Nat, and the transverse projections
with minimal quantum uncertainties, kdJ2

yl¼ kdJ2
z l¼

1
2 Jx. Changing

to the frame rotating at the Larmor frequency Q and introducing
the canonical variables for the collective transverse atomic spin
components12, we obtain X̂A ¼ Ĵ rot

y =
ffiffiffiffi
Jx

p
; P̂A ¼ Ĵ rot

z =
ffiffiffiffi
Jx

p
which obey
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Figure 1 | Experimental set-up for teleportation of light onto an atomic
ensemble. Atoms are initially optically pumped into F ¼ 4, mF ¼ 4 state
with a 4-ms pulse. A strong y-polarized 2-ms ‘in’ pulse of light is then sent
through the atomic sample at Bob’s location and becomes entangled with the
atoms (the pulse length is around 600 km and is not shown to scale in the
figure). The pulse travels 0.5 m to Alice’s location, where it is mixed on a
beamsplitter (BS) with the object of teleportation—a few-photon coherent
pulse of light—generated by the electro-optical modulator (EOM)
synchronously with the strong pulse. In the two output ports of the BS, two
polarization beamsplitters (PBS) split light onto two pairs of detectors which
perform a polarization homodyne measurement (a Bell measurement). The
results of these measurements are combined, processed electronically, as
described in the text, and sent via a classical communication channel to Bob.
There they are used to complete the teleportation onto atoms by shifting the
atomic collective spin state with a pulse of a radio-frequency (RF) magnetic
field of 0.2-ms duration. After a delay of 0.1 ms, a second strong pulse—the
verifying pulse—is sent to read out the atomic state, in order to prove the
successful teleportation. Inset, relevant atomic sublevels and light modes
(not to scale). The frequency difference between a weak quantum field (black
arrow) and the strong entangling field (thick red arrow) is equal to the
Zeeman splitting of the ground state sublevels.
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the canonical commutation relation X̂A; P̂A

� �
¼ i provided that

Jx ..
ffiffiffiffiffiffiffiffiffiffiffiffi
kdJ2

y;zl
p

; kJy;zl. Here X̂A and P̂A are the recipient operators
in the teleportation protocol.

The light to be teleported, and the ‘in’ and ‘out’ modes (Fig. 1), are
described by single mode canonical operators6,12 Ŷ; Q̂, and ŷin; q̂in and
ŷout; q̂out, respectively. These operators obeying bŶ; Q̂c¼ ½ŷ; q̂� ¼ i are
quantum analogues of the amplitude and phase of light in classical
physics, or, more precisely, of the classical quadrature phase ampli-
tudes y, q in the decomposition of the electric field of light with the
frequency q as E/ y cosqtþ q sinqt (see Methods for exact defi-
nitions). Two non-commuting variables in quantum mechanics
cannot be measured without distortion. The challenge of teleporta-
tion thus consists of a faithful transfer of these not simultaneously
measurable operators, Ŷ; Q̂, onto atomic operators X̂A and P̂A. The
Raman-type interaction (see Fig. 1 inset) couples the quantum qþQ
sideband of the ‘in’ field to the Zeeman sublevels separated by the
frequency Q¼ 322 kHz. Therefore we introduce the cosQt; sinQt
components of the light operators Ŷc;s; Q̂c;s and ŷc;s; q̂c;s (see
Methods). Canonical operators for the upper sideband mode Ŷ; Q̂
can be expressed12 via measurable sin ðQtÞ and cos ðQtÞ components,
Ŷs; Q̂s; Ŷc; Q̂c, as Ŷ¼ 1ffiffi

2
p ðŶs þ Q̂cÞ; Q̂¼2 1ffiffi

2
p ðŶc 2 Q̂sÞ.

We first describe generation of entanglement between light and
atoms. The ‘in’ strong pulse is y-polarized, hence its x-polarized
mode ŷin; q̂in is in a vacuum state. After interaction with atoms12, the
x-polarized ‘out’ mode operators ŷout; q̂out are given by:

ŷout
c ¼ ŷin

c þ
k2

4
q̂in

s þ
k2

4
ffiffiffi
3

p vs

� �
þ

kffiffiffi
2

p P̂
in

A ; q̂out
s;c ¼ q̂in

s;c

ŷout
s ¼ ŷin

s 2
k2

4
q̂in

c 2
k2

4
ffiffiffi
3

p vc

� �
2

kffiffiffi
2

p X̂
in

A

ð1Þ

The terms in curly brackets in the equations for ŷ represent vacuum
contributions coming from different orthogonal modes of the ‘in’
pulse where the canonical operators vs;c represent vacuum temporal
higher order canonical modes12. The terms containing P̂in

A and X̂in
A

describe the imprint of the atomic state on the light via coherent
forward scattering from the atomic ensemble, or, in other words,
polarization rotation due to the Faraday effect14,15. The atomic spin
operators are transformed by the interaction with light as follows12:

X̂
out

A ¼ X̂
in

A þ
kffiffiffi
2

p q̂in
c ; P̂

out

A ¼ P̂
in

A þ
kffiffiffi
2

p q̂in
s ð2Þ

The second terms in equation (2) describe the imprint of the light
state onto atoms via the dynamic Stark effect14.

The atoms–light entanglement described by equations (1) and (2)
is very close12, under our experimental conditions, to the Einstein–
Podolsky–Rosen entanglement optimal for quantum teleportation.
The atoms–light coupling constant k¼ a1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NphNatF

p
jG=AD/a0

has been discussed in detail previously12,14–18. (Here j is the dipole
cross-section18, a1 is the vector polarizability18, G¼ 2:6 MHz is the
natural linewidth (HWHM) of the transition, Nph ¼ 4£ 1013 is the
number of the y-polarized photons in the strong pulse, D¼ 825 MHz
is the blue detuning of light from the atomic resonance, and A¼
4:8 cm2 is the cross-section of the atomic sample.) As in our previous
experiments with the atoms–light quantum interface, strong coup-
ling with the atomic ensemble is achieved in the region of a high
resonant optical depth a0. In the experiment we choose a nearly
optimal value12 of k< 1 by changing a0 /Nat with the temperature
of the vapour. Note that another condition for strong coherent
coupling is a very high Nph in the y-polarized mode.

At Alice’s location (Fig. 1), the ‘out’ pulse is mixed on BS with the
object of teleportation—a few-photon x-polarized coherent pulse
with frequency qþQ generated by an electro-optical modulator
(EOM). A Bell measurement of canonical variables6,12,13 is performed
by two sets of polarization homodyne detectors in the two output
ports of BS (Fig. 1). Homodyne detection followed by the normal-
ization to the vacuum (shot) noise of light6 is a standard method for
measuring canonical variables of light. In our experiment, the strong
y-polarized pulse, besides driving the entangling interaction, also
plays the role of a local oscillator for the homodyne detection. The
variables in phase with the strong pulse ŷc;s ¼

1ffiffi
2

p ðŷout
c;s þ Ŷc;sÞ are

measured via a measurement of the Stokes parameter Ŝ2 in one
output of BS, whereas the out-of-phase components q̂c;s ¼

1ffiffi
2

p ðq̂out
c;s 2

Q̂c;sÞ are measured via the Stokes parameter Ŝ3 in the other arm (see
Methods). The sin ðQ tÞ and cos ðQ tÞ components are measured by
processing photocurrents with lock-in amplifiers. The Bell measure-
ment of operators ŷc;s and q̂c;s yields four results, yc,s and q c,s.
Operationally, these values are properly normalized integrals of
corresponding photocurrents over the pulse duration (see Methods).
As shown in Fig. 1, the photocurrents are combined to yield two
feedback signals proportional to y s 2 q c and yc þ q s which are sent
from Alice to Bob. Auxiliary magnetic field pulses14,17 with frequency
Q and amplitudes proportional to the feedback signals are applied to
the atoms, so that the collective atomic spin variables at Bob’s site are
shifted to become:

X̂
tele

A ¼ X̂
out

A þ gXðys 2 qcÞ ¼ X̂
out

A þ 1ffiffi
2

p gXðŷ
out
s 2 q̂out

c Þþ gXŶ

P̂
tele

A ¼ P̂
out

A 2 gPðyc þ qsÞ ¼ P̂
out

A 2 1ffiffi
2

p gPðŷ
out
c þ q̂out

s Þ þ gPQ̂
ð3Þ

where gX,Pare the feedback gains. This step completes the teleportation
protocol, as the light operators Ŷ; Q̂ are now transferred onto atomic
operators X̂ tele

A ; P̂ tele
A , and all other terms in equation (3) can be made

small with a suitable choice of k and g.
To prove that we have performed the quantum teleportation, we

determine the fidelity of the teleportation. Towards this end, we send
a second—verifying—strong pulse of y-polarized light through the

Figure 2 | Raw experimental data for a series of
teleportation runs. a, Calibration of the teleportation
feedback gain. Verifying pulse canonical variable yver

c
versus the input pulse canonical variable Q for 10,000
teleportation runs. All dimensionless canonical
variables are normalized so that their variance for a
vacuum state is 1/2. The coherent input state used in
the plot has a mean photon number of �n< 500, and is
slowly modulated in phase during this measurement.
The straight line fit is used for calibration of the
feedback gain (see comments in the text). b, An
example of data from which the atomic state variances
after the teleportation are determined. Two canonical
variables of the verifying pulse,yver

c and yver
s , are plotted

for an input state with �n¼ 5 and a fixed phase. The
dashed lines indicate twice the standard deviation
intervals 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varðyver

c;s Þ
p

which are used to determine the
atomic state variances as discussed in the text.
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atomic ensemble after the teleportation is completed. From this
measurement we reconstruct the atomic operators X̂ tele

A and P̂ tele
A . The

fidelity is the overlap of the input state and the teleported state
averaged over the input state distribution12,14,17. The classical bench-
mark fidelity which has to be exceeded in order to claim the success of
quantum teleportation is known11 for a gaussian distribution of
coherent states with the width corresponding to the mean photon
number knl centred at zero. The experimental fidelity for such
distribution can be found as6,18:

Fn ¼
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2knlð12 gXÞ
2 þ 1þ 2j2

X

� �
2knlð12 gPÞ

2 þ 1þ 2j2
P

� �q

The gains are defined from the mean values of atomic and light
operators: �X tele

A ¼ gX �Y; �P
tele
A ¼ gP �Q. j2

X ;j
2
P are the variances for the

final gaussian state of the atoms.
The mean values for the input light operators are determined from

the results of the Bell measurement: �ys 2 �qc ¼ �Y and �yc þ �qs ¼ �Q. The
mean values and the variances of the atomic operators are deter-
mined from the verifying pulse measurements. Using equations (1)
and (3) and the input–output beamsplitter relations12, we can link
the measurement of the verifying pulse on the S2detector to the
atomic mean values: �y ver

c ¼ k
2
�P tele

A ¼
gPk

2
�Q, �yver

s ¼ k
2
�X tele

A ¼
gXk

2
�Y. Using

these expressions, we can calibrate gX;P , as shown in Fig. 2a where ŷ ver
c

is plotted as a function of Q̂, as the value of k¼ 0:93 is determined
independently from the projection noise measurement (see
Methods). From the linear fit to this distribution we find gP , which
can then be tuned to a desired value electronically. Results plotted in
Fig. 2a along with similar results for the other operator �ysð �YÞ present
the proof of the successful classical transfer of the mean values of the
quantum mechanical operators Ŷ; Q̂ of light onto atomic operators.

To verify the success of the quantum teleportation, we have to
determine the variances of the two atomic operators which now
contain the teleported input light operators. Figure 2b shows an
example of results ŷ ver

c ; ŷ ver
s for 250 teleportation runs for a fixed

input state. Making use of equation (1) and the beamsplitter
relations, we can directly find the atomic state variances from
Var{ŷsðcÞ} of such distribution as j2

XðPÞ ¼
4
k2 Var{ŷsðcÞ}2

k4

48 2
1
2

� �
. The

final values of j2
X ;j

2
P for a coherent state with a varied phase and a

given �n are found as averages over 10,000 points (that is, 40 runs like
in Fig. 2b). For example, for �n¼ 5 we find j2

XðPÞ ¼ 1:20ð1:12Þ taken at
gains 0.96 and 0.95 respectively. The results of j2

X;PðgX;PÞ for a range of
photon numbers �n¼ 0(vacuum), �n¼ 5; 20; 45; 180; 500 at various

gains are summarized in a figure in the Supplementary Methods.
From this we obtain j2

X;PðgX;PÞ, which can be inserted into the fidelity
expression. For a given width of the gaussian distribution of coherent
states we find the values of gX , gP, and the corresponding j2

X;PðgX;PÞ
which maximize the fidelity. We obtain the following fidelities for
distributions with a widthknl¼ 2; 5; 10; 20; 200: F2 ¼ 0:64^ 0:02;
F5 ¼ 0:60^ 0:02; F10 ¼ 0:59^ 0:02; F20 ¼ 0:58^ 0:02; F200 ¼
0:56^ 0:03. The expression for the classical benchmark fidelity11

Fclass
n ¼ knlþ1

2knlþ1 gives Fclass
2 ¼ 0:60; Fclass

5 ¼ 0:545; Fclass
10 ¼ 0:52;

Fclass
20 ¼ 0:51; Fclass

200 ¼ 0:50 (see Supplementary Methods for details
on the fidelity calculations). The maximal knl for successful tele-
portation is limited by small fluctuations of the classical gain, which
for large �n lead to large uncontrolled displacements of the teleported
state with respect to the input state, and hence to the decrease in the
fidelity.

In Fig. 3 we show the tomographically reconstructed teleported state
with the mean photon number �n¼ 5. Owing to the gaussian character
of the state, the knowledge of the means and the variances of two
quadrature phase operators is sufficient for the reconstruction.

Note that the atomic object onto which the teleportation is
performed contains hundreds of billions of atoms. However, the
number of excitations in the ensemble, of course, corresponds to the
number of photons in the initial state of light. Those excitations are
coherently distributed over the entire ensemble.

Having demonstrated the teleportation for gaussian states, we now
address the applicability of this teleportation protocol to the teleporta-
tion of a light qubit, which is relevant for, for example, quantum
computing3. In the Supplementary Notes we give the derivation of the
predicted qubit fidelity, Fq, based on the performance of our
teleportation protocol for coherent states. For experimentally rele-
vant values of losses and decoherence, Fq ¼ 0:72—higher than the
best classical fidelity for a qubit of 0.67—can be predicted. In order to
experimentally demonstrate such qubit teleportation, a source genera-
ting such a qubit in a temporal, spectral and spatial mode compatible
with our atomic target is required. First steps towards generation of an
atom-compatible qubit state of light have been recently made using
atomic ensembles19–21, single atoms in a cavity22,23, and a photon
subtracted squeezed state24.

In our experiment, the entanglement generation and the Bell
measurement overlap in time because the duration of the strong
pulse and the pulse to be teleported is 2 ms, which is much longer
than the time it takes light to travel from Alice to Bob. This situation,
also the case in some teleportation experiments6,8, is different, for
example, from the teleportation7,9,10 in which the entanglement
generation and the Bell measurement are separated in time. This
feature is not inherent to our teleportation scheme—indeed, in
principle, a shorter strong pulse (of higher power) would generate
the same entanglement on a timescale short compared to the
propagation time, especially if the distance from Alice to Bob is
extended to a few kilometres. The teleportation distance can be
increased, and is limited only by propagation losses of light and the
atomic coherence lifetime. The timing of the entanglement genera-
tion and the Bell measurement may be potentially important for
future applications.

Further improvement of the present teleportation protocol can be
achieved by performing more complex photocurrent processing with
the same homodyne set-up. As shown in ref. 12 and in the Sup-
plementary Notes, a fidelity of 0.93 can be achieved if such processing
is combined with the use of an experimentally feasible25 6 dB
squeezed strong pulse.

METHODS
Calibration and measurement techniques. Physically, we perform measure-
ments of the Stokes operators of light by two sets of balanced homodyne
detectors (Fig. 1). The measurements on the first pulse represent the generalized
Bell measurement. The same measurements on the second (verifying) pulse
allow us to determine the teleported atomic state by performing quantum state

Figure 3 | Tomographic reconstruction of a teleported state with �n55
(coloured contour) versus the state corresponding to the best classical
state transfer. Canonical variables plotted on horizontal axes are
normalized so that their variance for a vacuum state is 1/2.
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tomography. The relevant cos ðQ tÞ and sin ðQ tÞ modulation components of
the Stokes operators are measured by processing the corresponding photo-
currents with lock-in amplifiers. The Stokes operators of interest are Ŝ2 (which is
the difference between photon fluxes in the modes polarized at ^458 to the
vertical axis, and Ŝ3 (which is the corresponding quantity for the left- and right-
hand circular polarizations).

Calibration of the measurement of canonical variables for light is based on
measurements of the shot (vacuum) noise level. We measure the Stokes
parameters for the x-polarization mode in a vacuum state. The linear depen-
dence of the variance of the measured photocurrents on the optical power of the
strong pulse proves that the polarization state of light is, in fact, shot (vacuum)
noise limited25. All other measurements of Ŝ2; Ŝ3 are then normalized to this shot
noise level, yielding the canonical variables as:

yc ¼
1ffiffiffi

2
p Ð T

0 dtcos ðQtÞS vacuum
2 ðtÞ

ðT

0

dt cos ðQ tÞS2ðtÞ

and similarly for qcðS3Þand the sin ðQ tÞ components. Since our detectors have
nearly unity (better than 0.97) quantum efficiency, the Stokes operators can be
operationally substituted with measured photocurrents.

Next we need to calibrate the atomic coherent (projection) noise level.
Whereas balanced homodyne detection for light has become an established
technique for determination of the vacuum state6, a comparable technique for
atoms is a relatively recent invention. Here we utilize the same procedure as used in
our previous experiments on the atoms–light quantum interface14,15. We use the
fact that the vacuum (projection) noise level for collective atomic spin states in the
presence of a bias magnetic field can be determined by sending a pulse of light
through two identical atomic ensembles with oppositely oriented macroscopic
spin orientation. We therefore insert a second atomic cell in the beam. As described
in detail in ref. 15, the transmitted light state in this experiment is given by:

ŷout
c ¼ ŷin

c þ
kffiffiffi
2

p P̂atom1 þ P̂atom2

� �
¼ ŷin

c þ kP̂total

where P̂total is the spin canonical variable for the entire 2-cell atomic sample.
Intuitively this equation can be understood by noting that terms proportional
to k2 in equation (1) cancel out for propagation through two oppositely
oriented ensembles. A similar equation holds for ŷout

s with substitution of X̂total

for P̂total. The results for Varðŷout
c;s Þ as a function of the number of atoms are

shown in the figure in the Supplementary Methods. The fact that the points lie
on a straight line, along with the independent measurement of the degree of
spin polarization above 0.99, proves14,15,18 that we are indeed measuring the
vacuum (projection) noise of the atomic ensemble. k2 for different atomic
numbers is then calculated from the graph (Supplementary Methods). Its
values are in good agreement with the theoretical calculation18 according to
k¼ a1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NphNatF

p
jG=AD. In the experiment, we monitor the number of atoms

by sending a weak off-resonant probe pulse along the direction x and measuring
the Faraday rotation angle proportional to the collective macroscopic spin of
the ensemble Jx ¼ 4Nat. This Faraday angle is monitored throughout the
teleportation experiment, so that the value of k2 is known at every stage.
Decoherence and losses. The main sources of imperfections are decoherence of
the atomic state and reflection losses of light. For experimental values of the
atomic decoherence and losses, the model developed in ref. 12 predicts, for
example, F5 ¼ 0:66, which is still higher than the observed value owing to
imperfections unaccounted for in the model but comparable to the obtained
experimental results. Dissipation also affects the experimental state reconstruc-
tion procedure. The main effect of the light losses 1 ¼ 0.09 is that it modifies k
into k

ffiffiffiffiffiffiffiffiffiffiffi
12 1

p
. However, this modified k is, in fact, exactly the parameter

measured in the two-cell calibration experiment described above, so no extra
correction is due because of these losses. There is also a small amount of
electronic noise of detectors which can be treated as an extra vacuum contri-
bution to the input state.
Standard deviation of the teleportation fidelity. The standard deviation of the
fidelity for knl# 20 is calculated as follows:

SDðFÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

PN þ d2
SN þ d2

el þ d2
b þ d2

SNR þ d2
fit þ d2

g

q
¼

¼1022
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:02 þ 1:652 þ 0:12 þ 0:32 þ 0:22 þ 1:22 þ 0:82

p
< 0:02

where dPN ¼ 0.01 is the contribution to the SD(F) due to the projection noise
fluctuations including an error due to imperfect optical pumping, dSN ¼ 0:017 is
the contribution due to the shot noise level uncertainty, del ¼ 0:001 is the
contribution of the electronics noise level fluctuations, db ¼ 0:003 is the
uncertainty due to fluctuations in the atomic decay constant, dSNR ¼ 0:002 is
the contribution of the fluctuations in the ratio of responses of two pairs of
detectors, dfit ¼ 0:012 is the deviation due to the uncertainty of the quadratic fit

of the atomic noise as a function of gain, and dg ¼ 0:008 is the contribution of
the gain fluctuations. For knl. 20, dfit ¼ 0:016, giving SDðFÞ< 0:026 < 0:03.
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